Using Turbulence Auto-PIREP's to Improve Pilots' Turbulence Situational Awareness

Paul Robinson

AeroTech Research (757) 723-1300

paulrobinson@atr-usa.com

Example Operational Scenario Today: Near Convection

- Convection detected by onboard radar
- Other aircraft in general vicinity
- Turbulence reports received (voice)
- Turbulence awareness from PIREPS, ATC, AOC/dispatch
- Situational awareness of turbulence limited

Example Scenario Today: Preflight Dispatch

 Region of convection affecting planned flight path (purple line).

Other aircraft on and around flight path (blue crosses)

 PIREPS relayed to dispatch/AOC/OCC

 Situational awareness of turbulence limited

Turbulence Auto-PIREP's System

Goal is to develop technology that:

- removes subjectivity, inaccuracies, and latencies in current turbulence PIREP's
- no additional pilot workload
- increases flight crew situational awareness of turbulence
- is advisory in nature
- uses <u>current system infrastructure</u> <u>displays</u>, <u>comms</u>, <u>data</u>
- displays turbulence severity and location to flight-crew in real time with no inference required by the flight crew

Turbulence Auto-PIREP's System

To present to pilots, in real-time, reports of turbulence hazard location and severity scaled to receiving aircraft

End Users:

- ✓ Primary flight crews (preflight & en route products)
- ✓ Secondary AOC, dispatch, met.

Example Operational Scenario Today: Near Convection

 Convection detected by onboard radar

Other aircraft in general vicinity

 Turbulence reports received (voice)

- Turbulence awareness from PIREPS, ATC, AOC/dispatch

 Situational awareness of turbulence limited

Example Scenario and Display Concept

- Operation in region of convection.
- Data received from other aircraft is translated into a turbulence hazard for the receiving aircraft.
- Same aircraft may transmit several warnings if severity increases. No transmission if no hazard.
- Hazard warning icons colorcoded severe moderate light shown with relative altitude (100's of feet).
- In scenario shown, region of increasing turbulence severity ahead of aircraft; lighter turbulence seen from icon to right of track.
- Provides improved situational awareness of turbulence with no additional workload to pilot.

Example Scenario Today: Preflight Dispatch

Region of convection affecting planned flight path (purple line).

Other aircraft on and around flight path (blue crosses)

PIREPS relayed to dispatch/AOC/OCC

Situational awareness of turbulence limited

Example Concept Scenario: Preflight Dispatch

Type: B 777-200

Weight: 575,000 – 600,000 lbs

Alt: FL 310

Speed: M 0.82

 Region of convection affecting planned flight path (purple line).

- Specific aircraft type, weight, speed, and altitude
- Automated reports from other aircraft scaled to designated aircraft.
- Situational awareness of turbulence improved

Example Concept Scenario: Preflight Dispatch

Type: B 737-800

Weight: 130,000 – 150,000 lbs

Alt: FL 260

Speed: M 0.76

 Region of convection affecting planned flight path (purple line).

- Specific aircraft type, weight, speed, and altitude
- Automated reports from other aircraft scaled to designated aircraft.
- Situational awareness of turbulence improved

- Aircraft encounters turbulence.
- If loads are above a threshold then algorithm generates and broadcasts an alert packet.

1.

How does it work?

How does it work?

- 1. Aircraft encounters turbulence.
- 2. If loads are above a threshold then algorithm generates and broadcasts an alert packet.

- 1. Aircraft receives packet.
- Scales hazard to type & configuration.
- 3. Displays to flight crew (if at or above threshold).

How does it work?

- Aircraft encounters turbulence. 1.
- If loads are above a threshold then algorithm generates, and broadcasts an alert packet.

- Aircraft receives packet.
- Scales hazard to type & configuration.
- Displays to flight crew (if at or above threshold).
- Presented on map, scaled to pilot's aircraft (if at or above-threshold).

Work Status

Algorithms:

- » reporting complete & expanding to other a/c types
- » interpreting complete & expanding to other types
- » scaling complete & expanding to other types
- » displays issues to be resolved

Flight testing

- » alerting logic and comms initial test complete
- » multi-ship experiment needed (FY-03 plan)

System requirements definition

- » preliminary
- » need FAA/industry collaboration

Government/Industry implementation group

» Convened, Oct 8th, 2003

2002 Flight Experiment: Results

Goal:- to test and evaluate preliminary alerting algorithm and communications capabilities

- No missed transmissions
- Average round-trip latency in tx/rx 0.52 sec.
- Alerts scaled with turbulence encounter severity
- Over 70 events and maneuvers acquired for algorithm refinement

FY-03 Planned Activities

Develop total system requirements.

- user community participation
- > implementation constraints
- integration with other systems
- flight crew simulations

FY-03 Planned Activities

Develop total system requirements.

Develop operational concept simulations.

- total system implementation
- > assess operational effectiveness

FY-03 Planned Activities

Develop total system requirements.

Develop operational concept simulations.

2-aircraft flight experiment.

- ➤ Test system effectiveness in a real-time representative environment.
- ➤ Perform real-time & offline assessment of system effectiveness.